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Abstract 6 

Fire safety of Reinforced Concrete (RC) columns is an important design aspect to ensure 7 

the overall integrity of structures during fire events. Currently, fire ratings of RC sections are 8 

achieved using prescriptive methods. As new codes are moving towards performance based 9 

design, practitioners are in need of rational design tools to assess the capacity of heated sections. 10 

To construct the axial force-moment interaction diagram of a RC section using existing numerical 11 

methods, high computation demand and knowledge of heat transfer and stress analysis are 12 

required. This paper presents the derivation of a set of formulas that can be used to estimate the 13 

average temperature distribution within the concrete section and the corresponding internal 14 

forces. The utilization of these formulas to construct interaction diagrams of fire-exposed RC 15 

sections is then explained. The proposed formulas are validated by comparing their predictions 16 

with experimental and analytical results by others. 17 
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1. Introduction 1 

Ongoing development in material and construction technology challenges structural engineers 2 

to achieve innovative designs. One of the key issues that they need to address is the fire safety of 3 

the designed structure. For example, the evacuation process for high-rise buildings must be 4 

carefully considered and the structural safety of the building should be assured. When Reinforced 5 

Concrete (RC) columns experience elevated temperatures, their capacities are significantly 6 

reduced. This reduction is directly related to the deteriorated mechanical properties of concrete 7 

and steel [1]. Fire temperatures also induce nonlinear thermal and transient creep strains [2]. 8 

The most reliable approach to assess the fire endurance of RC columns is the experimental 9 

approach [3], [4]. However, its cost and limitations make it unsuitable for regular design. The 10 

capacity of heated RC columns can be analytically assessed using axial force-moment interaction 11 

diagrams [5]. Available methods to construct these diagrams include the Eurocode 2 [6] and the 12 

Finite Element Method (FE). Eurocode 2 [6] recommends the use of the 500 ℃ isotherm method. 13 

This method assumes that concrete is either undamaged or fully-damaged depending on its 14 

temperature as compared to 500 ℃. Ignoring concrete damage, when its temperature is lower 15 

than 500 ℃, can result in unsafe predictions [5], [8]. The FE method can be applied for a range 16 

of load eccentricities while varying the applied axial force until failure occurs. Such method 17 

needs to be repeated for different fire durations, which makes it computationally expensive [5], 18 

[7]. El-Fitiany and Youssef [8], [9], [10] proposed a sectional analysis method that relies on 19 

converting the two-dimensional (2D) temperature distribution to an average one-dimensional 20 

(1D) temperature distribution to predict the uniaxial behavior of heated sections at different axial 21 

load levels (λ). This method can be used in similar manner to the FE method to construct the 22 

interaction diagrams. Although it requires much less computational effort, it is still considered 23 
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unpractical for design engineers. 1 

This paper proposes a practical approach to construct the interaction diagrams of RC sections 2 

during fire exposure. The proposed approach accounts for the effect of fire on concrete properties 3 

and strains. It also eliminates the need to divide the section into smaller elements. The following 4 

sections explain the development of an efficient method to calculate an average 1D temperature 5 

distribution, the derivation of closed form solutions for concrete internal stresses, and a 6 

simplified method to construct the interaction diagrams for fire-exposed columns. 7 

 8 

2. Interaction diagrams using sectional analysis 9 

Fire temperature decreases concrete and steel mechanical properties and induces thermal and 10 

transient strains. A sectional analysis approach suitable for the analysis of rectangular RC 11 

sections at elevated temperatures was proposed by El-Fitiany and Youssef [8],[9]. This approach 12 

was validated by comparing its results with experimental and analytical work conducted by 13 

others. The use of this approach to evaluate the interaction diagrams for a fire-exposed RC 14 

section involves the following steps: 15 

1. At specific fire duration, the section is divided into a number of elements, Fig. 1a, and the 16 

temperature distribution is predicted using the Finite Difference Method (FDM) [1]. 17 

2. The heat transfer elements are grouped into horizontal layers to conduct sectional analysis. 18 

To accurately predict the section behavior, two average temperatures, ఙܶ and ௔ܶ௩௚, are calculated 19 

for each layer. ఙܶ represents the temperature corresponding to the average concrete strength for 20 

the layer. ௔ܶ௩௚ represents the algebraic average temperature of the elements within each layer and 21 

is suitable to calculate thermal and transient creep strains [9]. 22 

3. The total concrete strain at elevated temperatures (ߝ) is composed of three terms: 23 
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unrestrained thermal strain (ߝ௧௛ ), instantaneous stress related strain (ߝ௖ ), and transient creep 1 

strain (ߝ௧௥   ). The total strain is given by Eq. (1).  2 

ߝ = ௧௛ߝ  + + ௖ߝ   ௧௥                                                               (1) 3ߝ

The nonlinear thermal strain (ߝ௧௛) distribution, Fig. 1f, is calculated using ௔ܶ௩௚. The thermal 4 

strains of the steel bars are calculated based on the concrete temperature at their locations. ߝ௧௛ is 5 

then converted to an equivalent linear thermal strain (ߝ௧௛തതതത), Fig. 1c, by considering self-6 

equilibrium of internal thermal forces in concrete and steel layers. ߝ௧௛തതതത is represented by the value 7 

of the axial strain (ߝ௜). The corresponding curvature is equal to zero as the section is assumed to 8 

be heated from four faces. Fig. 1e shows the differences between the equivalent linear and 9 

nonlinear thermal strains, which represent the self-induced thermal strains (ߝ௦௧). These strains are 10 

assigned as initial strains for the concrete and steel layers to model the corresponding self-11 

induced self-equilibrating thermal stresses. The terms ߝ௦௧ , ߝ௖ , and ߝ௧௥    are lumped into an 12 

equivalent mechanical strain ߝ௖் as shown by Eq. (2). 13 

ߝ = ௧௛തതതതߝ   + ൫ߝ௦௧ + + ௖ߝ  ௧௥    ൯ߝ = ௧௛തതതതߝ  +  ௖்                                                  (2) 14ߝ

4. For assumed top strain and curvature, the corresponding stresses in the concrete and steel 15 

layers are evaluated using the constitutive stress-strain relationships of concrete and steel that 16 

were recommended by Youssef and Moftah [2] can evaluate. The developed internal forces and 17 

the corresponding axial force are then calculated. This process is repeated for different top strains 18 

until the desired axial force and the corresponding moment are obtained. This process is repeated 19 

for different curvature values, which allows sketching the moment-curvature relationship, Fig. 2. 20 

The maximum applied moment defines the moment of resistance at the assumed axial load. 21 

5. Repeating step 4 for different axial load levels () allows evaluating the interaction diagram 22 

for the given section at a given fire duration. 23 
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6. Steps 1 to 5 are to be repeated at different fire durations. 1 

Two potential simplifications to the described method are to ignore ߝ௦௧ and use ௔ܶ௩௚ for 2 

strength calculations. The errors corresponding to such simplifications are assessed in this section 3 

by analyzing the columns shown in Table 1 at different axial load levels ( = 0.0 - 0.9). 4 

Comparisons between the analytical flexural capacities with and without the mentioned 5 

simplifications are shown in Figs. 3 and 4. It is clear that ignoring ߝ௦௧ or using ఙܶ for stress 6 

calculations have negligible effect on the flexural capacity of the examined columns. These 7 

simplifications might not be appropriate while examining the column deformations. 8 

Although the sectional analysis method is relatively easy to apply as compared to the FE 9 

method, it requires knowledge of heat transfer principles and the ability to conduct iterative 10 

analysis at elevated temperatures. The following sections present a simplified approach to predict 11 

the interaction diagram of a RC column during fire exposure.  12 

 13 

3. Proposed method 14 

Concrete has low thermal conductivity, which results in a steep temperature distribution near 15 

the heated faces and a constant temperature at the core of the heated section. Thus, the concrete 16 

strength becomes variable near the heated faces and constant within the inner core. The flexural 17 

capacity of the section can be estimated by equilibrating the internal compression and tension 18 

forces in concrete and steel. A number of approximations are assumed to allow integrating 19 

concrete stress-strain relationships with respect to mechanical strain and temperature 20 

distributions. The main assumptions include: 21 

1) using a 1D average temperature distribution, i.e. ௔ܶ௩௚, instead of 2D elevated temperature 22 

contours within the RC sections, 23 
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2) choosing an appropriate, i.e. integrable, algebraic function to represent ௔ܶ௩௚ variation along 1 

the section height, 2 

3) ignoring the effect of self-induced strain, ߝ௦௧, on the flexural capacity of fire-exposed 3 

columns, 4 

4) using an integratable stress-strain constitutive relationships for concrete at elevated 5 

temperatures, and 6 

5) identifying the envelope for concrete failure strain by plotting the variation of maximum 7 

strain (ߝ௖் ௠௔௫) along section height. 8 

For a given fire duration and axial load, the proposed method provides simplified equations to 9 

evaluate: (1) a one-dimensional average temperature distribution, (2) the concrete strains at 10 

failure, (3) the concrete and steel stresses at failure, and (4) the flexural capacity of the section. 11 

The following sections provide the derivations of the simplified equations. 12 

 13 

4. Average temperature distribution 14 

In this section, a simplified method to calculate the temperature distribution within a fire-15 

exposed concrete section is presented. The section is then divided into regions of constant and 16 

variable temperatures. Equations to evaluate the average temperature ( ௔ܶ௩௚) profile are derived.  17 

 18 

4.1. Wickstrom simplified formulas 19 

Wickstrom [11] proposed and validated a set of handy formulas to calculate the 2D 20 

temperature distribution within a fire exposed concrete section. Wickstrom’s formulas can be 21 

applied for any type of concrete and fire scenario. However, they are practically easy for ISO 834 22 

standard fire and normal weight concrete. Wickstorm’s formulas do not account for variability in 23 
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the thermal conductivity of concrete, moisture content, and nonlinear boundary conditions that 1 

have prescribed temperatures and heat fluxes [11]. Concrete initial moisture content has a 2 

negligible effect on the temperature predictions [1]. Assuming a constant thermal conductivity for 3 

the concrete material, accurate predictions of the temperature variation within a cross-section can 4 

be obtained [11]. 5 

Fig. 5 shows a RC concrete column subjected to fire from four sides; Left (L), Right (R), 6 

Bottom (B), and Top (T) faces. Application of Wickstrom’s formulas to calculate the temperature 7 

distribution within this section can be summarized as follows: 8 

1) The fire temperature ௙ܶ in Celsius is first calculated at a specific fire duration ݐ (ℎݎ) using an 9 

assumed fire temperature-time relationship.  10 

2) An equivalent ISO 834 fire duration (ݐ∗) is then calculated. ݐ∗ evaluates the corresponding 11 

time of exposure to the standard ISO 834 standard fire to have a temperature of ௙ܶ. The ratio 12 

between the modified time (ݐ∗) and the actual fire duration (ݐ) defines a dimensionless 13 

compartment time factor (Γ). The ISO 834 standard fire can be described by Eq. (3). 14 

௙ܶ  = 345 log(480 ݐ∗ + 1)                      (3) 15 

where ௙ܶ  is the ISO 834 standard fire temperature in Celsius at a modified fire duration ݐ∗ in ℎ16 .ݏݎ 

3) The temperature rise at any point (ݕ ,ݔ) within the section due to heating from four sides can 17 

be estimated using Eq. (4). 18 

௫ܶ௬ = ൣ݊௪ ൫݊௫ + ݊௬ − 2݊௫ . ݊௬൯ + ݊௫ . ݊௬൧ ௙ܶ                        (4a) 19 

݊௪ = 1 − 0.0616 ൫√Γ .  ݐ൯
ି଴.଼଼

              ≥ 0.0                                             (4b) 20 

݊௫ = ቂ0.18 ln ቀ
௧

௫మቁ − 0.81ቃ
୊୧୰ୣ (୐)

+ ቂ0.18 ln ቀ
௧

(௕ି௫)మቁ − 0.81ቃ
୊୧୰ୣ (ୖ)

        ≥ 0.0              (4c)      21 

݊௬ = ቂ0.18 ln ቀ
௧

௬మቁ − 0.81ቃ
୊୧୰ୣ (୆)

+ ቂ0.18 ln ቀ
௧

(௛ି௬)మቁ − 0.81ቃ
୊୧୰ୣ (୘)

        ≥ 0.0             (4d)      22 
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where ܾ is the section width,  ℎ is the section height, ௫ܶ௬ is the temperature rise at any point (1 ,ݔ 

 in Celsius, ݊௪ is the ratio between the surface temperature and the fire temperature, and ݊௫ 2 (ݕ

and ݊௬ are the ratios between the internal and surface temperatures considering heating in the 3 ݔ 

and ݕ directions, respectively. Wickstrom’s formula, Eq. (4), is extended in the following 4 

subsections to obtain an average 1D temperature distribution along the section depth, i.e. ݕ -axis. 5 

 6 

4.2. Temperature regions 7 

Figs. 5 and 6 show the potential temperature regions, R1, R2, and R3, within a concrete 8 

section. The values shown in each region indicate the heating surface causing temperature 9 

variation in ݔ and ݕ directions. Values of zero indicate that the temperature is constant in a given 10 

direction. While region R2(0,0), Fig. 5, has a constant temperature, region R3(L+R, T+B), Fig. 11 

6, has variable temperature that is affected by the fire temperature of the four sides. The value 12 ݖ 

defines the boundaries of the temperature regions and can be evaluated by equating ݊௫ or ݊௬, 13 

Eqs. (4c) or (4d), to zero. This will result in Eq. (5). Value of ݖ is less than ܾ/2 and ℎ/2 in Fig. 5 14 

and is greater than them in Fig. 6. 15 

ݖ = √݁ିସ.ହ  16 (5)                           ݐ 

The schematic temperature profiles across lines 1-1 and 2-2 of Fig. 5 present the variation 17 

of temperature in ݔ direction at  ݕ ≤ ݕ and ݖ = ݖ → (ℎ/2 −  respectively. Both profiles show 18 ,(ݖ

varying temperature for R1 and constant temperature for R2. The schematic temperature profiles 19 

for lines 1-1 and 2-2 of Fig. 6 present the variation of temperature in the ݔ direction at  ݕ ≤ (ℎ −20 

ݕ and (ݖ = (ℎ − (ݖ →  respectively. All regions have variable temperature profile. 21 ,ݖ

 22 

 23 
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4.3. Average temperatures 1 

Eq. (4) predicts the temperature rise at different locations within the studied concrete 2 

section. For each of lines 1-1 and 2-2, ݊௬ is constant and ݊௫ value defines the temperature along 3 

the line. Three equations are derived to evaluate the average temperature within each region at a 4 

given y value. ௔ܶ௩௚ ଵ, Eq. (6a), represents the average temperature for regions affected by heating 5 

from either L or R. ௔ܶ௩௚ ଶ, Eq. (6b), represents the average temperature for regions not affected 6 

by heating from L or R. ௔ܶ௩௚ ଷ , Eq. (6c), represents the average temperature due to heating from 7 

the left and right sides simultaneously, i.e. (L + R).  8 

௔ܶ௩௚ ଵ = ൣ0.18 ݊௪ − 0.36 ݊௪ . ݊௬ + 0.18 ݊௬൧ ቂݔଶ  ݈݊ ቀ
௧

௫మ
మቁ – ଵݔ ݈݊ ቀ

௧

௫భ
మቁ ቃ 

்೑

( ௫మି௫భ)
  9 

             −0.45 ௙ܶ . ݊௪ + 1.9 ௙ܶ . ݊௪. ݊௬ − 0.45 ௙ܶ . ݊௬                        ݔ = ଵݔ →  ଶ                    (6a) 10ݔ

௔ܶ௩௚ ଶ =  ௙ܶ . ݊௪. ݊௬                                                                                   (6b) 11 

௔ܶ௩௚ ଷ = ൫0.18 ݊௪ + 0.18 ݊௬ − 0.36 ݊௪. ݊௬൯ ቂ݈݊ ቀ
௧

(௕ି௫మ)మቁ ݔଶ – ݈݊ ቀ
௧

(௕ି௫భ)మቁ ݔଵቃ
்೑

( ௫మି௫భ)
  12 

                 + ܾ ൫0.36 ݊௪. ݊௬ − 0.18 ݊௪ − 0.18 ݊௬൯ ቂ݈݊ ቀ
௧

(௕ି௫మ)మቁ – ݈݊ ቀ
௧

(௕ି௫భ)మቁቃ   
்೑

( ௫మି௫భ)
  13 

                 −0.45 ௙ܶ . ݊௪ + 0.9 ௙ܶ . ݊௪. ݊௬ − 0.45 ௙ܶ . ݊௬ + ௔ܶ௩௚ ଵ         ݔ = ଵݔ →  ଶ              (6c) 14ݔ

The average temperatures, ௔ܶ௩௚ ଵ, ௔ܶ௩௚ ଶ, and ௔ܶ௩௚ ଷ, are shown in Figs. 5 and 6 by the 15 

dashed lines. The ambient temperature (20 ℃) is to be added to the calculated average 16 

temperatures. A weighted average temperature can then be calculated for each line to facilitate 17 

sketching the final average temperature distribution along the section height as shown in Figs. 5 18 

and 6. The final temperature profile can be idealized using Eq. (7). ݖଵ and ݖଶ are constants that 19 

can be estimated using the weighted average temperature values at ݕ =  0.0 and ݕ =  This 20 .ݖ 

equation form was chosen as it allows reaching a closed form solution.  21 

௔ܶ௩௚ = . ଵݖ  ݁(௭మ  .  ௬)                                 (7) 22 
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where ݖଵ =  ௔ܶ௩௚ (௬ୀ଴.଴) and ݖଶ =
୪୬൤

೅ೌೡ೒ (೤స೥)
ೋభ

൨

௭
   1 

 2 

5. Concrete and steel constitutive relationships 3 

Concrete and steel models used in the proposed method are discussed in this section. 4 

 5 

5.1. Concrete compressive strength 6 

Concrete compressive strength experiences significant degradation at elevated 7 

temperatures. Eurocode 2 predicts the reduced compressive strength (݂ᇱ
௖்) for siliceous and 8 

carbonate concretes as a ratio from its ambient value (݂ᇱ
௖) [6]. The reduction in ݂ᇱ

௖் for siliceous 9 

concrete can be fitted by a polynomial equation, Eq. (8). Fig. 7 shows the flexural capacities of 10 

the columns in Table 1 considering either siliceous or carbonate concrete. Carbonate aggregate 11 

slightly increases the flexural capacity of RC columns during fire exposure, and, thus the use of 12 

Eq. (8) can be conservatively applied for carbonate aggregate concrete. 13 

݂ᇱ
௖்   ݂ᇱ

௖⁄ = 1.76 × 10ିଽ ௔ܶ௩௚
ଷ − 3 × 10ି଺ ௔ܶ௩௚

ଶ + 2.5 × 10ିସ ௔ܶ௩௚ + 1.00                      (8) 14 

where ௔ܶ௩௚ is the weighted average temperature, in ℃, calculated in the previous section. 15 

 16 

5.2. Thermal strains 17 

The total concrete strain at elevated temperatures (ߝ) is given by Eq. (2). The thermal 18 

curvature shifts the ܯ–߰ diagrams, Fig. 2. The flexural capacity is not affected by the thermal 19 

deformations, which allows ignoring ߝ௧௛തതതത while calculating the section capacity. 20 

 21 

 22 



 11

5.3. Concrete strain at peak stress 1 

The value of ߝ௖  at the peak stress (݂ᇱ
௖்), i.e. ߝ௢் , defines the stress-strain relationship 2 

during fire exposure, Fig. 8. For loaded RC columns, the effect of elevated temperatures on ߝ௢்  3 

is negligible [2]. Fig. 9 shows the variation of ߝ௢் +  ௧௥ with fire temperature as proposed by 4ߝ

Eurocode 2. The shown values of ߝ௢் +  ௧௥ are consistent with Terro’s model [10] within its 5ߝ

validated temperature range, i.e. up to 600 ℃. A linear relationship, Eq. (9), is chosen to 6 

represent the Eurocode 2 recommendation. Such a relationship allows reaching a closed form 7 

solution while accounting for concrete nonlinearity as will be discussed in the next section. To 8 

evaluate the error associated with using this approximation, the flexural capacities, at different 9 

axial load levels (ߣ = 0.0 − 0.9), of the columns shown in Table 1 are calculated up to 4 ℎݏݎ of 10 

ASTM-E119 standard fire exposure. Fig. 10 shows that this approximation has a minor effect on 11 

the flexural capacity predictions. 12 

௢்ߝ + ௧௥ߝ = 2.52 × 10ିହ ௔ܶ௩௚        80 ℃ < ௔ܶ௩௚ ≤ 1200 ℃                      (9) 13 

 14 

5.4. Concrete ultimate strain 15 

Concrete ultimate strain is the strain at which concrete crushing occurs. Elevated 16 

temperatures increase this strain. Models evaluating the effect of elevated temperatures on the 17 

ultimate concrete compressive strain (ߝ௨்) are limited in the literature. Meda et al. [13] assumed 18 

that ߝ௨் corresponds to a maximum post peak stress of 0.85 ݂ᇱ
௖். ߝ௨் is defined in Eurocode 2 as 19 

the strain corresponding to zero compression stress and can be calculated using Eq. (10). The 20 

difference between ߝ௨் and ߝ௢் +  ௧௥ is constant and equal to 0.02. 21ߝ

௨்ߝ = 2.52 × 10ିହ ௔ܶ௩௚ + Δߝ = ௢்ߝ + ௧௥ߝ + 0.02                                                      (10) 22 

 23 
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5.5. Maximum concrete strain 1 

The maximum concrete strain is defined as the strain corresponding to the maximum 2 

moment resistance. As shown in Fig. 2, this strain is usually lower than ߝ௨். Elbahy et al. [14] 3 

studied the variation of this strain with the axial load level at ambient temperature.  4 

A parametric study is conducted to evaluate the compression strain (ߝ௖் ௠௔௫) 5 

corresponding to the flexural capacity at elevated temperatures, i.e. peak points in Fig. 2. The 6 

flexural capacities of the columns shown in Table 1 considering different axial load levels (ߣ =7 

0.0 − 0.9) were evaluated. For each column section, the ܯ–߰ diagrams are constructed assuming 8 

different lengths for the descending branch of the concrete stress-strain curve (ݎ . Δߝ), Fig. 8. 9 ݎ 

values of 0.00, 0.25, 0.50, 0.75, and 1.0 are assumed. Fig. 11 shows the interaction diagrams for 10 

column 2ܥ at 1.0 ℎݎ ASTM-E119 fire exposure. The dashed line represents the correct flexural 11 

capacities as determined by the peak points of the constructed ܯ–߰ diagrams at different axial 12 

loads. Ignoring the descending branch, ݎ =  0.00, results in conservative flexural capacity. On 13 

the other hand, considering the full descending branch, i.e. ݎ = 1.0, significantly underestimates 14 

the flexural capacity. Fig. 12 shows a comparison between the correct flexural capacities and the 15 

predicted flexural capacities considering ݎ =  0.00, 0.25, ܽ݊݀ 0.5 for all of the analyzed columns 16 

for fire durations up to 4.0 ℎݏݎ. Reasonable predictions are obtained when ݎ is taken equal to 17 

0.25. Thus, ߝ௖் ௠௔௫ , Eq. (11), is defined by adding 0.25 Δߝ to (ߝ௢் +  equals to 18 ߝ௧௥), where Δߝ

0.02. 19 

௖் ௠௔௫ߝ = ௢்ߝ) + (௧௥ߝ + 0.005                                          (11) 20 

 21 

5.6. Concrete stress-strain relationships 22 

The relationship between the compression stress, ௖்݂, and the corresponding mechanical 23 



 13

strain, ߝ௖், at elevated temperatures was studied by a number of researchers. A general and 1 

simple approach to estimate the ௖்݂ −  ௖் descending branch is proposed by Eurocode 2 and 2ߝ 

represented by Eq. (12). This curve is adopted in this study due to its simplicity and ease of 3 

implementation in the proposed method. Eq. (12) implicitly accounts for transient creep as the 4 

strain corresponding to the maximum concrete stress is shifted using the transient creep strain. 5 

Fig. 8 shows the application of Eq. (12) at three average temperatures ( ௔ܶ௩௚ =  200, 400, and 6 

600 ℃). Eqs. (8) and (9) are used to calculate ݂ᇱ
௖்/݂ᇱ

௖ and (ߝ௢் +  ௧௥), respectively. 7ߝ

௖்݂ = ݂ᇱ
௖்  ൤2 ቀ

ఌ೎೅

ఌ೚೅ାఌ೟ೝ
ቁ − ቀ

ఌ೎೅

ఌ೚೅ାఌ೟ೝ
ቁ

ଶ
൨                                               ߝ௖் ≤ ௢்ߝ) +  ௧௥)         (12a) 8ߝ

      = ݂ᇱ
௖்  ቂ

ఌೠ೅ିఌ೎೅

଴.଴ଶ
ቃ                                                     (ߝ௢் + (௧௥ߝ < ௖்ߝ  ≤  ௨்                   (12b) 9ߝ

  10 

5.7. Steel stress-strain relationships 11 

Lie et al.’s model [1] is used to predict the reduced yield strength of reinforcing bars 12 

( ௬்݂), Eq. (13), and the stress-strain ( ௦்݂ −  ௦்) relationship, Eq. (14). 13ߝ

௬்݂ = ቂ1 +
்

ଽ଴଴ ୪୬(்/ଵ଻ହ଴)
ቃ ௬݂                    0 < ܶ ≤ 600 ℃             (13a) 14 

       = ቂ
ଷସ଴ି଴.ଷସ ்

்ିଶସ଴
ቃ ௬݂                               600 < ܶ ≤ 1000 ℃               (13b) 15 

௦்݂ =
௙[் ,଴.଴଴ଵ]

଴.଴଴ଵ
௦்ߝ                    ௦்ߝ  ≤  ௣               (14a) 16ߝ

௦்݂ =
௙[் ,଴.଴଴ଵ]

଴.଴଴ଵ
௣ߝ  + ݂ ൣܶ , ൫ߝ௦் − ௣ߝ + 0.001൯൧ −  ݂[ܶ , ௦்ߝ               [0.001 >  ௣           (14b) 17ߝ

௣ߝ = 4 × 10ି଺ ௬݂                  (14c) 18 

݂[ܶ, 0.001] = (50 − 0.04 ܶ) ൣ1 − ݁(ିଷ଴ା଴.଴ଷ ்) √଴.଴଴ଵ൧ × 6.9           (14d) 19 

݂ ൣܶ , ൫ߝ௦் − ௣ߝ + 0.001൯൧ = (50 − 0.04 ܶ) ቈ1 − ݁
(ିଷ଴ା଴.଴ଷ ்) ට൫ఌೞ೅ିఌ೛ା଴.଴଴ଵ൯

቉ × 6.9           (14e) 20 
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6. Evaluation of Concrete Internal Forces 1 

The following sections propose a simplified approach to calculate concrete internal forces 2 

using the predicted ௔ܶ௩௚ distribution and the presented material models. 3 

 4 

6.1. Concrete strain profile 5 

The average temperature profile ( ௔ܶ௩௚), Eq. (7), is a function of the distance ݕ. Utilizing 6 

the predicted ௔ܶ௩௚ distribution, (ߝ௢் +  ௖் ௠௔௫ distributions can be evaluated using Eqs. 7ߝ ௧௥) andߝ

(9) and (11), respectively. Fig. 13 shows these distributions for the column section shown in Fig. 8 

5. A linear ߝ௖் distribution is assumed as given by Eq. 15. 9 

௖்ߝ = ݕ ଷݖ  ସ                      (15) 10ݖ +

where ݖଷ and ݖସ are constants that define ߝ௖் variation in ݕ direction.  11 

The flexural capacity occurs when ߝ௖் value at any height ݕ is equal to ߝ௖் ௠௔௫ at the 12 

same height. Three possible failure scenarios should be considered:  13 

1) concrete fails at extreme top fibers of the section, i.e. ݕ = ℎ. The slope of ߝ௖் distribution (ݖଷ) 14 

can take any value between zero (horizontal line) and the slope of the tangent to ߝ௖் ௠௔௫ profile at 15 

ݕ = ℎ, Fig. 13. 16 

2) concrete fails at the boundaries of the constant ௔ܶ௩௚ zone, i.e. ݕ = ℎ −  ௖் 17ߝ The slope of .ݖ

distribution (ݖଷ) can take any value between infinity (vertical line) and the slope of the tangent of 18 

ݕ ௖் ௠௔௫ profile atߝ = ℎ −  19 .ݖ

3) concrete fails at any point between ݕ = ℎ − ݕ and ݖ = ℎ. In this case, ߝ௖் distribution is 20 

tangent to ߝ௖் ௠௔௫ profile. 21 

 22 

 23 
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6.2. Calculation of concrete internal forces and their locations 1 

Average concrete compressive stresses ( ௖்݂)௔௩௚ that correspond to ߝ௖் profile can be 2 

estimated using Eq. (12). These stresses are integrated over the section area to calculate the 3 

internal compression force in concrete (ܥ௖) and its location (ݕ), Eqs. (16) and (17).  4 

௖ܥ = ׬  ( ௖்݂)௔௩௚  ܾ   ݀ݕ
௛

௬ୀ(௛ି௖)
                             (16) 5 

ݕ  . ௖ܥ = ׬  ( ௖்݂)௔௩௚  ܾ  ݕ݀  ݕ
௛

௬ୀ(௛ି௖)
                    (17) 6 

where ܾ and ℎ are the section width and depth (݉), respectively and ܿ is the neutral axis depth 7 

(݉). ( ௖்݂)௔௩௚ is the average concrete compressive stress (݇ܲܽ) at different ݕ values. 8 

The following substitutions are made in Eqs. (16) and (17) to allow reaching a closed 9 

form solution: (1) ( ௖்݂)௔௩௚ = Eq. (12), (2) (ߝ௢் + (௧௥ߝ = Eq. (9), (3) ݂ᇱ
௖் = Eq. (8), (4) ߝ௨் = 10 

Eq. (10), (5) ௔ܶ௩௚ = either a constant value or Eq. (7), and (6) ߝ௖் =Eq. (15). The solutions are 11 

given by Eqs. (18) to (25), which are shown in the Appendix. For values of ߝ௖் ≤ ௢்ߝ) +  ௧௥), 12ߝ

two equations are given for the compressive force in concrete, Eqs. (18) and (22). They allow 13 

evaluating ܥ௖ ௢(௩) and ܥ௖ ௢(௖) for variable and constant ௔ܶ௩௚ distributions, respectively. The 14 

centroids of these compressive forces are given by Eqs. (19) and (23). For values of ߝ௖் > ௢்ߝ) +15 

 ௖ ௨(௖), can be evaluated using Eqs. (20) and 16ܥ ௖ ௨(௩) orܥ ,௧௥), the compressive force in concreteߝ

(24) for variable or constant ௔ܶ௩௚ distributions. The centroids of these forces are given by Eqs. 17 

(21) and (25).  18 

Fig. 13 shows a four-face heated RC column section with two potential mechanical strain 19 

 ௖ ௢ (௩), Fig. 13a, are evaluated using Eqs. (18) 20ܥ distributions. The magnitude and location of (௖்ߝ)

and (19), respectively. The magnitude and location of ܥ௖ ௨ (௩) are evaluated using Eqs. (20) and 21 

(21), respectively. The magnitude and location of ܥ௖ ௢ (௖), Fig. 13b, are evaluated using Eqs. (22) 22 
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and (23), respectively. The magnitude and location of ܥ௖ ௨ (௖) are evaluated using Eqs. (24) and 1 

(25), respectively. The total internal compression force ܥ௖ ௢ (௖) is calculated by summing two or 2 

more components shown in Fig. 13. 3 

 4 

6.3. Interaction Diagram 5 

The interaction diagram for a fire-exposed RC column can be constructed using the 6 

following main steps. At specific fire duration, 7 

1) an external axial load  ( ௔ܲ௣௣) is assumed.  8 

2) an average temperature ( ௔ܶ௩௚) distribution is predicted using Eq. (7). Based on ௔ܶ௩௚ 9 

distribution, (ߝ௢் +  ௖் ௠௔௫ distributions are evaluated using Eqs. (9) and (11) 10ߝ ௧௥) andߝ

3) different linear mechanical strain (ߝ௖்) distributions are assumed, i.e. varying ݖଷ and ݖସ in Eq. 11 

(15). For each ߝ௖் distribution, Eqs. (18) to (25) are used to calculate the corresponding 12 

concrete force and its location. Equilibrium is then conducted between internal forces in 13 

concrete and steel and the assumed external axial load, ௔ܲ௣௣. An iterative procedure requires 14 

changing  ݖଷ and ݖସ till force equilibriums is achieved. 15 

4) the corresponding flexural capacity is calculated. 16 

5) The above steps are repeated considering different axial loads and the corresponding flexural 17 

capacities are evaluated. These capacities define the interaction diagram of the analyzed 18 

column section at specific fire duration. 19 

 20 

7. Illustrative Example 21 

The 600 ݉݉ square column analyzed by Meda et al. [13], Fig. 14a, is used as an example 22 

to explain the proposed method. The column is reinforced by 24 − 20 ݉݉ steel bars uniformly 23 
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distributed with 40 ݉݉ concrete cover to main reinforcement. The compressive and yield 1 

strength of the siliceous concrete and reinforcing bars are 40 ܽܲܯ and 430 ܽܲܯ, respectively. 2 

The column is subjected to a standard ISO 834 fire from four directions. 3 

Sectional analysis was first used to predict the interaction diagram after ݐ =4 

0.0 ℎݎ, 1.5 ℎݏݎ, ܽ݊݀ 3.0 ℎݏݎ of fire exposure. The FDM mesh used for the heat transfer 5 

calculations, by Lie et al. [1], is shown in Fig. 14a. The corresponding average temperature 6 

distribution is shown in Fig. 14b as discrete points [1]. The interaction diagrams shown in Fig. 15 7 

were constructed using the iterative method mentioned in section 2. 8 

The proposed simplified method is used to predict the interaction diagram for the column 9 

section after 1 5.  t hrs  of fire exposure. A simple excel spreadsheet was prepared to apply the 10 

following steps of the proposed method. 11 

1) ISO 834 fire temperatures ௙ܶ of 986 ℃ is calculated using Eq. (3). Γ is equal to 1. 12 

2) ݊௪ value of 0.96  is estimated using Eq. (4b). 13 

 s is calculated using Eq. (5). Fig. 16 shows the different regions 14ݎof 1.5 ℎ ݐ value of 0.129 for ݖ (3

of the example column. 15 

4) The average temperatures for each region are calculated as follows, 16 

ଵݔ value of 0.129 is used to define the region boundaries. Substituting in Eq. (6a) using ݖ =17 

 0.0 ݉, and ݔଶ =  0.129 ݉  results in ௔ܶ௩௚ ଵ = 320 + 619 ݊௬. Substituting in Eq. (6b) results 18 

in ௔ܶ௩௚ ଶ = 923 ݊௬.  19 

5) The ambient temperature (20 ℃) is added to the calculated average temperatures. Weighted 20 

average temperatures are then calculated at different values of ݕ. The average temperature 21 

distribution is shown in Fig. 14b as a solid line. The figure shows that the values calculated 22 

using the developed simplified method matches the values predicted using the FDM method. 23 
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6) The constants (ݖଵ and ݖଶ) of Eq. (7) are evaluated using values of ௔ܶ௩௚ at ݕଵ of 0.0 ݉ and 1 

 ଶ of 0.129 ݉.  2ݕ

The predicted ௔ܶ௩௚ distribution is used to plot (ߝ௢் +  3 ݕ ௖் ௠௔௫ distributions alongߝ ௧௥) andߝ

direction using Eqs. (9) and (11), respectively, Fig. 17b. 4 

7) A strain distribution is assumed as shown by the heavy line in Fig. 17b (ݖଷ and ݖସof Eq. (15) 5 

are equal to 0.089 and −0.033, respectively). The line is tangent to the concrete crushing 6 

curve, which assumes that concrete crushing occurs at the point highlighted in Fig. 17b. 7 

8) concrete compressive forces and corresponding centroids are calculated using expressions 8 

provided in Appendix I as follows:   9 

a. For ݕ =  0.374 → 0.421 ݉ [ constant temperature and ߝ௖் ≤ ௢்ߝ) +  ௧௥) ] 10ߝ

Eqs. (22) and (23)  ܥ௖ ௢ (௖) = . ௖ ௢ (௖)ܥ , ܰ 745,905− = ݕ −301 ݇ܰ. ݉  (i.e. ݕ =11 

0.404 ݉) 12 

b. For ݕ =  0.421 → 0.471 ݉ [ constant temperature and ߝ௖் > ௢்ߝ) +  ௧௥) ] 13ߝ

Eqs. (24) and (25)  ܥ௖ ௨ (௖)  = . ௖ ௨ (௖)ܥ , ܰ 1,014,715− ݕ = −452 ݇ܰ. ݉  (i.e. ݕ =14 

0.445 ݉) 15 

c. For ݕ =  0.471 → 0.581 ݉ [ variable temperature and ߝ௖் > ௢்ߝ) +  ௧௥) ] 16ߝ

Eqs. (20) and (21)  ܥ௖ ௨ (௩) = . ௖ ௨ (௩)ܥ , ܰ 1,520,285− = ݕ −789 ݇ܰ. ݉ (i.e. ݕ =17 

0.519 ݉) 18 

d. For ݕ =  0.581 → 0.600 ݉ [ variable temperature and ߝ௖் ≤ ௢்ߝ) +  ௧௥) ] 19ߝ

Eqs. (18) and (19)   ܥ௖ ௢ (௩)  = . ௖ ௢ (௩)ܥ , ܰ 60,833− = ݕ −36 ݇ܰ. ݉   (i.e. ݕ =20 

0.592 ݉) 21 

9) The temperature of steel bars in the example column can be calculated using the Wickstrom 22 

method, Eq. (4a). The calculated temperatures for steel bars are given in Table 2.  23 
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10) The steel stresses are calculated using Eq. (14) and given in Table 2. 1 

11) The calculated concrete and steel forces are in equilibrium with external forces. The flexural 2 

capacity of the example column is predicted after 1.5 ℎݎ ISO 834 fire exposure as 3 

957 ݇ܰ. ݉. The corresponding applied axial load ( ௔ܲ௣௣) is calculated by summing the 4 

internal forces in concrete and steel ( ௔ܲ௣௣ is 3,000 ݇ܰ).  5 

The proposed method is repeated for the example RC column using different ߝ௖் 6 

distributions. The flexural capacity and corresponding axial load are calculated for each 7 

distribution. Fig. 15 shows the interaction diagrams for the example column at 1.5 ℎݎ and 3 ℎ8 ݏݎ 

fire exposures. The proposed method’s predictions and the sectional analysis method results are 9 

in a good match, Figs. 15 and 18. Meda et al. [13] overestimates the flexural capacity at t = 0.0 10 

hrs. This can be due to the used approximate concrete stress-strain relationship [13]. 11 

 12 

8. Validation 13 

The proposed method is validated in this section by comparing its results with analytical 14 

and experimental results by others. 15 

 16 

8.1. Law and Gillie (2010) 17 

Fig. 19 shows a rectangular RC section subjected to a standard ISO 834 fire from three 18 

sides. Law and Gillie [5] constructed, using sectional analysis, the interaction diagrams for this 19 

section at ݐ = 1 ℎݎ and 2 ℎݏݎ. A comprehensive finite element analysis was conducted by Law 20 

and Gillie to validate the results of the sectional analysis method [5]. The distortion in the 21 

interaction diagrams is due to the change of plastic centroid location as a result of the uneven 22 

heating of the section during fire exposure. The proposed method is applied as explained in the 23 
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illustrative example. The effect of uneven heating, i.e. three sides only, is considered as follows  1 

1) The ݖ value is calculated, using Eq. (5), for the bottom side only. The weighted average 2 

temperatures are calculated at ݕ equals to 0.0 and z. The corresponding constants (ݖଵ and ݖଶ) 3 

of Eq. (7) are evaluated for this region of the heated section. The average temperature 4 

distribution is variable at y ≤ z and uniform at y > z.  5 

2) The asymmetric ௔ܶ௩௚ distribution is used to plot (ߝ௢் +  6 ݕ ௖் ௠௔௫ distributions alongߝ ௧௥) andߝ

direction using Eqs. (9) and (11), respectively. The predicted (ߝ௢் +  ௖் ௠௔௫ 7ߝ ௧௥) andߝ

distributions are asymmetric as well, i.e. variable at y ≤ z and uniform at y > z. The concrete 8 

compressive forces and corresponding centroids are calculated similar to the illustrative 9 

example using expressions provided in Appendix I.  10 

As shown in Figs. 18 and 20, the proposed method results are in close agreement with the 11 

results of Law and Gillie. 12 

 13 

8.2. Lie and Wollerton (1986) 14 

Fig. 21a shows the cross-section and reinforcement for a RC column tested by Lie and 15 

Wollerton [3]. The tested column was subjected to a standard ASTM-E119 fire exposure under 16 

25 ݉݉ eccentric load (ܲ = 1,000 ݇ܰ), which was kept constant during the whole test. The fire 17 

endurance recorded at the end of the fire test was 181 ݉݅݊ (ݐ = 3.0 ℎݏݎ). The reinforcing steel 18 

cover was 48 ݉݉ and the end conditions of the tested column were pinned-pinned. Fig. 21b 19 

shows the predicted ௔ܶ௩௚ distribution through the section height. ௔ܶ௩௚ distribution does not 20 

include a constant distribution due to heating overlap from the top and bottom faces. Based on 21 

௔ܶ௩௚ distribution, (ߝ௢் +  ௖் ௠௔௫ profiles are calculated and are shown in Fig. 21b. A 22ߝ ௧௥) andߝ

linear ߝ௖் distribution is then assumed, Fig. 21c, i.e. concrete crushing occurs at top fibers of the 23 
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section. The internal forces and moments for concrete and steel are calculated using the equations 1 

provided in the appendix. Fig. 21d shows the values for internal concrete compressive forces and 2 

their locations. By conducting equilibrium between external and internal forces, the proposed 3 

method estimates a 25 ݉݉ eccentric load capacity of 890 ݇ܰ, i.e. a small error of −11%. 4 

 5 

9. Summary and Conclusions 6 

Interaction diagrams represent an efficient tool to predict the flexural capacity of RC 7 

columns at ambient and fire conditions. Sectional analysis method can be used to construct 8 

interaction diagrams for fire exposed RC columns. However, it is computationally expensive for 9 

design engineers as it requires dividing the column section into layers to conduct heat transfer 10 

and stress analysis during fire exposure. A simple technique to calculate an average 1D 11 

temperature distribution is presented and validated in this paper. Based on this temperature 12 

distribution, the heated RC section is divided into different zones to conduct stress analysis. A 13 

number of approximations are assumed to allow integrating concrete stress-strain relationships 14 

with respect to mechanical strain and temperature distributions.  15 

Mathematical expressions are then derived to calculate the internal compressive forces 16 

and their locations. Structural engineers can use these expressions to easily construct the 17 

interaction diagrams for fire exposed RC columns using first principles. The predictions of the 18 

proposed method are in good agreement with analytical and experimental results by others. 19 

  20 
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Nomenclature  1 

 ଵ  factor used in calculating internal concrete force, equals to ݁௬భ   ௭మ 2ܣ
 ଶ  factor used in calculating internal concrete force, equals to ݁௬మ   ௭మ 3ܣ
ܾ column width in x direction 4 
Cୡ  internal compression force in concrete  5 
Cୡ ୭ (୴)  concrete compression force at εୡ୘ ≤ (ε୭୘ + ε୲୰) for variable Tୟ୴୥ distribution 6 
Cୡ ୭ (୴) . y concrete moment about x axis at εୡ୘ ≤ (ε୭୘ + ε୲୰) for variable Tୟ୴୥ distribution 7 
Cୡ ୳ (୴) concrete compression forces at εୡ୘ > (ε୭୘ + ε୲୰) for variable Tୟ୴୥ distribution 8 
Cୡ ୳ (୴) . y concrete moment about ݔ axis at ߝ௖் > ௢்ߝ) +  ௧௥) for variable ௔ܶ௩௚ distribution 9ߝ
௖்ߝ ௖ ௢ (௖) concrete compression force corresponding toܥ ≤ ௢்ߝ) +  ௧௥) for constant ௔ܶ௩௚  10ߝ
. ௖ ௢ (௖)ܥ ௖்ߝ axis at ݔ concrete moment about ݕ ≤ ௢்ߝ) +  ௧௥) for constant ௔ܶ௩௚ 11ߝ
௖்ߝ ௖ ௨ (௖)   concrete compression force corresponding toܥ > ௢்ߝ) +  ௧௥) for constant ௔ܶ௩௚  12ߝ
. ௖ ௨ (௖)ܥ ௖்ߝ axis at ݔ concrete moment about ݕ > ௢்ߝ) +  ௧௥) for constant ௔ܶ௩௚ 13ߝ
݂′௖ compressive strength for concrete at ambient temperature 14 
fy yield strength of steel bars at ambient temperature 15 
݂ᇱ

௖்                 reduced compressive strength at elevated temperatures 16 

௖்݂ compression stress in heated concrete 17 

௬்݂ reduced yield strength of reinforcing bars at elevated temperatures 18 

௦்݂ compression or tension stress in heated steel bars 19 
( ௖்݂)௔௩௚  average concrete compressive stresses 20 
ℎ cross-section height  21 
 flexural moment 22 ܯ
݊௪ ratio between the surface temperature and the fire temperature 23 
݊௫ and ݊௬ ratios between the internal and surface temperatures due to heating in the ݔ and 24 ݕ 

directions, respectively 25 
ܲ axial load 26 
 length of descending branch in concrete stress-strain relationship 27  ݎ
 fire duration 28 ݐ
 Equivalent fire duration assuming ISO 834 standard fire  29 ∗ݐ
T temperature in degree Celsius [1 oF = 1.8 oC + 32] 30 
 ఙܶ  temperature produces the same average concrete strength for the layer 31 

௧ܶ௛ algebraic average temperature of the elements within each layer 32 
 ௫ܶ௬ temperature rise at any point located at (ݕ ,ݔ)  33 

௔ܶ௩௚ algebraic average distribution along the section height  34 

௔ܶ௩௚ ଵ              average temperature for regions affected by heating from either left or right  35 

௔ܶ௩௚ ଶ              average temperature for regions not affected by heating from left or right 36 

௔ܶ௩௚ ଷ              average temperature due to heating from the left and right sides simultaneously 37 

௙ܶ fire temperature 38 

௙ܶ (୍ୗ୓) ISO 834 standard fire temperature  at a modified fire duration 39 ∗ݐ 
,ݔ  horizontal and vertical coordinates for any point within the column/beam section, 40   ݕ

origin located at bottom left of the section 41 
,ଵݕ  direction 42 ݕ ଶ  boundaries of internal concrete compression force measured inݕ
 boundary of  fire affected regions 43 ݖ
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,ଵݖ  ଶ   constants of average temperature fitting equation, Eq. (7) 1ݖ
,ଷݖ  direction, Eq. (15) 2 ݕ ௖் inߝ ସ  constants defining the linear variation ofݖ
 total concrete strain at elevated temperatures 3 ߝ

th  unrestrained thermal strain of concrete 4 

tr  transient creep strain in concrete 5 

c  instantaneous stress-related strain    6 

 ௖் equivalent mechanical strain in concrete during fire exposure 7ߝ
 ௧௛തതതത  equivalent linear thermal strain 8ߝ
 ௜ unrestrained thermal axial strain 9ߝ 
 ௦௧ self induced thermal strains 10ߝ
 ௦் equivalent mechanical strain in steel during fire exposure 11ߝ

o  strain at maximum stress of unconfined concrete at ambient temperature 12 
εoT value of ߝ௖  at peak stress ݂ᇱ

௖் 13 
 ௨் ultimate compressive strain of concrete, Eq. (10) 14ߝ
 ௖் ௠௔௫ compression strain corresponding to the flexural capacity 15ߝ 
Δߝ  difference between ߝ௨் and (ߝ௢் +  ௧௥) equals to 0.02 16ߝ
߰௜ unrestrained thermal curvature 17 
 axial or flexural load level 18 ߣ
 reinforcement ratio 19 ߩ
Γ compartment time factor 20 
 21 

  22 
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Table (1) – Parametric study cases 1 

Col  # 
b     
 
(݉݉)  

h   
   

(݉݉) 

f'c  

 

 (ܽܲܯ)

fy  

 

 (ܽܲܯ)

ρ 
 
 % (Ag) 

 2.1 443.7 36.1 305 305 1ܥ

 1.5 400.0 30.0 400 400 2ܥ

 1.5 400.0 40.0 600 600 3ܥ

 1.0 400.0 50.0 700 400 4ܥ

 1.0 400.0 25.0 700 500 5ܥ

 2 
* all columns are analyzed up to 4 ℎݏݎ of standard  3 
ASTM-E119 fire exposure 4 
 5 

 6 
 7 

 8 

Table (2) – Calculation of steel internal forces 9 

  10 

௦் ௬்݂ߝ ௫ܶ௬  ݕ ݔ ௦ܣ

௬݂
  

݂[  ܶ, 
   0.001] 

݂[   ܶ ,  
   ൫ߝ௦் − ௣ߝ

+ 0.001൯] 

௦்݂ ௦ܲ ௦ܲ  .  ݕ

(݉݉ଶ) (݉݉) (݉݉) (℃)   (ܽܲܯ) (ܽܲܯ) (ܽܲܯ) (݇ܰ) (݇ܰ. ݉) 

   
Eq. 
(4) 

Eq. 
(18) 

Eq. 
(16) 

Eq.  
(17d) 

Eq.  
(17e) 

Eq.  
(17a,b) ௦்݂ ×   ௦ܣ

600 50 50 559 0.029 0.46 65 170 217 130,028 6,501,391 

600 133 50 342 0.029 0.77 116 241 325 195,071 9,753,525 

600 217 50 342 0.029 0.77 116 241 325 195,071 9,753,525 

300 300 50 342 0.029 0.77 116 241 325 97,535 4,876,763 

600 50 133 342 0.021 0.77 116 236 320 191,761 25,561,774 

600 50 217 342 0.014 0.77 116 225 308 185,048 40,099,867 

600 50 300 342 0.007 0.77 116 195 279 167,236 50,170,885 

600 50 383 342 -0.001 0.77 116 52 100 -59,970 -22,986,365 

600 50 467 342 -0.008 0.77 116 205 289 -173,526 -80,984,368 

600 50 550 559 -0.016 0.46 65 153 200 -119,815 -65,898,443 

600 133 550 342 -0.016 0.77 116 228 312 -187,129 -102,920,724 

600 217 550 342 -0.016 0.77 116 228 312 -187,129 -102,920,724 

300 300 550 342 -0.016 0.77 116 228 312 -93,564 -51,460,362 

 

∑ ௦ܲ  = 
 
340,617 

∑ ௦ܲ  .  = ݕ
 

-280,453,254 
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Appendix I 1 

௖ ௢(௩)ܥ = ௖ ௢(௩) ௅ܥ 2  −  ௖ ௢(௩) ே                (18a) 2ܥ 

 3 
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௕   ௙’೎
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మ ௭భ
ቁ[                             (18b) 4 
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ଷ ݖଷ ݖଶ   +(ܣଶ ݕଶ − (ଵݕ ଵܣ × ଵݖ 3630767

ଶ ݖଷ ݖଶ 5 
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 + ቀ
௬మ

஺ଶ
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௖ ௢(௩) ேܥ  = ቀ
ହ.ଶଵ଴ଶ଺  ௕   ௙’೎
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. ௖ ௢(௩)ܥ = ݕ . ௖ ௢(௩) ௅ܥ 2  ݕ − . ௖ ௢(௩) ேܥ   1 (19a)                 ݕ
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ଷ ݖସ)  8 

ଶݕ ଶܣ)+ 
ଶ − ଵݕ ଵܣ

ଶ) × ଵݖ 1.5) 1065.0032
ଷ ݖଷ

ଶ ݖଶ
ଶ − ଵݖ

ଷ ݖଷ ݖଶ
ଷ ݖସ)  9 

ଶݕ)+ 
ଶ − ଵݕ

ଶ) × 4.5384586 × 10ହ ݖସ
ଶ ݖଶ

ସ ݖଵ
ଶ  10 

ଶݕ ଶܣ)+  − (ଵݕ ଵܣ × ଵݖ  4) 532.5016
ଷ ݖଷ ݖସ ݖଶ

ଶ − ଵݖ 6
ଷ ݖଷ

ଶ ݖଶ ଵݖ  −
ଷ ݖସ

ଶ ݖଶ
ଷ)  11 

 + ቀ
௬మ

஺మ
మ −

௬భ

஺భ
మቁ × 3.0274525 × 10ଵଵ(  ݖଷ ݖସ ݖଶ

ଶ  + ଷݖ  0.75
ଶ ݖଶ + ସݖ  0.5

ଶ ݖଶ
ଷ)  12 

 + ቀ
௬మ

஺మ
−

௬భ

஺భ
ቁ × 0.757906 × ଷݖ ଵݖ 6)10଼

ଶ 2ݖ + ଶݖ ସݖ ଷݖ ଵݖ 4
ଶ + ସݖ ଵݖ 

ଶ ݖଶ
ଷ)  13 

 + ቀ
ଵ

஺మ
మ −

ଵ

஺భ
మቁ × 0.756863 × 10ଵଵ(1.5 ݖଷ

ଶ + ସݖ 
ଶ ݖଶ

ଶ +  ଶ)  14ݖ ସݖ ଷݖ 2

 + ቀ
ଵ

஺మ
−

ଵ

஺భ
ቁ 0.757906 × ଶݖ ସݖ ଷݖ ଵݖ 4) 10଼ + ସݖ ଵݖ

ଶ ݖଶ
ଶ + ଷݖ ଵݖ 6

ଶ)  15 

ଶܣ)+  − (ଵܣ × ଵݖ  4−) 532.5016
ଷ ݖଷ ݖସ ݖଶ + ଵݖ 

ଷ ݖସ
ଶ ݖଶ

ଶ + ଵݖ 6
ଷ ݖଷ

ଶ)]       16 

 17 
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௖ ௨ (௩)ܥ = ቀ
ଵ

ଶ.଺଻଺଴ଽ

௕   ௙’೎
 ௭మ

మ ∆ఌ
ቁ [                                (20) 1 

ଶݕ)+  
ଶ − ଵݕ

ଶ) × 1.3403194 × 10଺ ݖଷ ݖଶ
ଶ  2 

ଶݕ ଶܣ)+  − (ଵݕ ଵܣ × 6.71083 × 10ଶ ݖଵ ݖଷ ݖଶ   3 

 +൫ܣଶ
ଷ ݕଶ − ଵܣ

ଷ ݕଵ൯ × 1.571667 × 10ିଷ ݖଵ
ଷ ݖଷ ݖଶ   4 

 −൫ܣଶ
ଶ ݕଶ − ଵܣ

ଶ ݕଵ൯ × ଵݖ  4.01855
ଶ ݖଷ ݖଶ   5 

 −൫ܣଶ
ସ − ଵܣ

ସ൯ × 2.97045 × ଵݖ 10ି଼
ସ ݖଶ  6 

 +൫ܣଶ
ଷ − ଵܣ

ଷ൯ × (−5.23889 × 10ିସ ݖଵ
ଷ ݖଷ + 3.607829 × 10ିହ ݖଵ

ଷ ݖଶ 7 

                                          + 1.571667 × 10ିଷ ݖଵ
ଷ ݖସ ݖଶ)  8 

 +൫ܣଶ
ଶ − ଵܣ

ଶ൯ × ଵݖ 0.5) 4.01855
ଶ ݖଷ − ଵݖ 

ଶ ݖସ ݖଶ)   9 

 +൫ܣଶ
ଶ − ଵܣ

ଶ൯ × 7.191535 × 10ିଶ ݖଵ
ଶ ݖଶ  10 

ଶܣ)+  − (ଵܣ × 6.71083 × 10ଶ(− ݖଵ ݖଷ +  ଶ)  11ݖ ସݖ ଵݖ 

ଶܣ)−  − (ଵܣ ×  ଶ  ]            12ݖ ଵݖ  80.97376

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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. ௖ ௨ (௩)ܥ = ݕ ቀ
ଵ

ଷ.ଶଵଵଷ

ି௕   ௙’೎
 ௭మ

య ∆ఌ
ቁ [                     (21) 1 

ଶݕ)− 
ଷ − ଵݕ

ଷ) × 1.0722555 × 10ଷ ݖଷ ݖଶ
ଷ   2 

ଶݕ)+ 
ଶ − ଵݕ

ଶ) × ଶݖ ସݖ 50−)32.16767
ଷ + ଶݖ 

ଷ)   3 

 +൫ܣଶ
ଶ ݕଶ

ଶ − ଵܣ
ଶ ݕଵ

ଶ൯ × 4.82226 × 10ିଷ ݖଵ
ଶ ݖଷ ݖଶ

ଶ   4 

 −൫ܣଶ
ଷ ݕଶ

ଶ − ଵܣ
ଷ ݕଵ

ଶ൯ × 1.886 × 10ି଺ ݖଵ
ଷ ݖଷ ݖଶ

ଶ   5 

ଶݕ ଶܣ)− 
ଶ − ଵݕ ଵܣ

ଶ) × ଶݖ ଷݖ ଵݖ  0.8053
ଶ   6 

 +൫ܣଶ
ଶ ݕଶ − ଵܣ

ଶ ݕଵ൯ × 4.82226 × 10ିଷ(− ݖଵ
ଶ ݖଷ ݖଶ + ଵݖ

ଶ ݖସ ݖଶ
ଶ)   7 

 −൫ܣଶ
ଶ ݕଶ − ଵܣ

ଶ ݕଵ൯ × 8.62984 × 10ିହ ݖଵ
ଶ ݖଶ

ଶ   8 

 +൫ܣଶ
ଷ ݕଶ − ଵܣ

ଷ ݕଵ൯ × 1.257334 × 10ି଺( ݖଵ
ଷ ݖଷ ݖଶ − ଵݖ 1.5

ଷ ݖସ ݖଶ
ଶ)   9 

 −൫ܣଶ
ଷ ݕଶ − ଵܣ

ଷ ݕଵ൯ × 4.3294 × ଵݖ 10ି଼
ଷ ݖଶ

ଶ  10 

ଶݕ ଶܣ)+  − (ଵݕ ଵܣ × ଶݖ ସݖ ଵݖ −) 0.8053
ଶ +  ଶ)   11ݖ ଷݖ ଵݖ 2

ଶݕ ଶܣ)+  − (ଵݕ ଵܣ × 9.7169 × 10ିଶ ݖଵ ݖଶ
ଶ  12 

 +൫ܣଶ
ସ ݕଶ − ଵܣ

ସ ݕଵ൯ × 3.56454 × 10ିଵଵ ݖଵ
ସ ݖଶ

ଶ   13 

 +൫ܣଶ
ଷ − ଵܣ

ଷ൯ × 4.19113 × 10ି଻(1.5 ݖଵ
ଷ ݖସ ݖଶ ଵݖ −

ଷ ݖଷ)   14 

 +൫ܣଶ
ଷ − ଵܣ

ଷ൯ × 1.4431 × ଵݖ 10ି଼
ଷ ݖଶ   15 

ଶܣ)+  − (ଵܣ × ଷݖ ଵݖ 0.5−) 0.8053 +  ଶ)   16ݖ ସݖ ଵݖ 

ଶܣ)−  − (ଵܣ × 9.7169 × 10ିଶ ݖଵ ݖଶ   17 

 +൫ܣଶ
ଶ − ଵܣ

ଶ൯ × 2.4111 × 10ିଷ(  ݖଵ
ଶ ݖଷ − ଵݖ 

ଶ ݖସ ݖଶ)   18 

 +൫ܣଶ
ଶ − ଵܣ

ଶ൯ × 4.315 × 10ିହ ݖଵ
ଶ ݖଶ  − ൫ܣଶ

ସ − ଵܣ
ସ൯ × 8.911 × 10ିଵଶ ݖଵ

ସ ݖଶ]  19 
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௖ ௢ (௖)ܥ = (−1 × 10଺ ܾ ݂’௖்) [−
ଵ

ଷ
 

௭య
మ

ఌ೚೅
మ ଶݕ) 

ଷ − ଵݕ
ଷ) + ቀ 

௭య

ఌ೚೅
ସݖ −  

௭య

ఌ೚೅
మቁ (ݕଶ

ଶ − ଵݕ
ଶ) +   1 

    ቀ2 
௭ర

ఌ೚೅
−

௭ర
మ

ఌ೚೅
మቁ ଶݕ) −  ଵ) ]                      (22) 2ݕ

 3 

. ௖ ௢ (௖)ܥ = ݕ (−1 × 10ଷ ܾ ݂’௖்) [−
ଵ

ସ
 

௭య
మ

ఌ೚೅
మ ଶݕ)  

ସ − ଵݕ
ସ) +

ଵ

ଷ
 ቀ2 

௭య

ఌ೚೅
− ସݖ 2  

௭య

ఌ೚೅
మቁ   4 

ଶݕ)        
ଷ − ଵݕ

ଷ) + (
௭ర

ఌ೚೅
−

௭ర
మ

ଶ ఌ೚೅
మ)  (ݕଶ

ଶ − ଵݕ
ଶ)                     (23) 5 

 6 

௖ ௨ (௖)ܥ = ቀ
ିଵ×ଵ଴ల ௕ ௙’೎೅

∆ఌ
ቁ ቂߝ௨் ( ݕଶ − (ଵݕ −

ଵ

ଶ
ଶݕ) ଷݖ 

ଶ − ଵݕ
ଶ) − ଶݕ) ସݖ  −  ଵ)ቃ                   (24) 7ݕ

 8 

. ௖ ௨ (௖)ܥ = ݕ ቀ
ିଵ×ଵ଴య ௕ ௙’೎೅

∆ఌ
ቁ ቂ−

ଵ

ଷ
ଶݕ) ଷݖ 

ଷ − ଵݕ
ଷ) +

ଵ

ଶ
௨்ߝ)  − ଶݕ) (ସݖ

ଶ − ଵݕ
ଶ)ቃ                    (25) 9 


